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Outbreaks of Hantavirus induced by seasonality
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Using a model for rodent population dynamics, we study outbreaks of Hantavirus infection induced by the
alternation of seasons. Neither season by itself satisfies the environmental requirements for propagation of the
disease. This result can be explained in terms of the seasonal interruption of the relaxation process of the
mouse population toward equilibrium, and may shed light on the reported connection between climate varia-
tions and outbreaks of the disease.
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I. INTRODUCTION

Hantaviruses are rodent-borne zoonotic agents that
cause diseases in humans such as hemorrhagic fever
renal syndrome and Hantavirus pulmonary syndrome@1–3#.
Hantaviruses have been identified at an increasing rat
recent years, and as of now about thirty different ones h
been discovered throughout the world. One of these, the
Nombre virus, was not isolated until 1993 after an outbre
in the Four Corners region of the USA@1,2#. The host of this
particularly dangerous virus is the deer mouse,Peromyscus
maniculatus, the most numerous mammal in North Americ
The virus produces a chronic infection in the mouse popu
tion, but it is not lethal to them. It is believed that transm
sion in the rodent population is horizontal and due to figh
and that the subsequent infection of humans, where the m
tality rate can be as high as 50%, is produced by their con
with the excreta of infected mice. Moreover, so far there
no vaccine or effective drug to prevent or treat the Hanta
rus pulmonary syndrome. Therefore, a major effort has b
launched to understand the population dynamics of d
mouse colonies in order to design effective prevention p
cies @1#.

It has been noted that environmental conditions are
rectly connected to outbreaks of Hanta@2#. For instance, the
1993 and 1998 outbreaks occurring in the Four Corners
gion have been associated with the so-called El Nin˜o south-
ern oscillation@2#. Related to this and other such observ
tions, the effects of seasonality in ecological systems h
been a subject of recent interest@4,5#. Multiyear oscillations
of mammal populations@6#, prey-predator seasonal dynami
@7#, and persistence of parasites in plants between season@8#
are examples that illustrate the importance of seasonalit
population dynamics.

Recently, Abramson and Kenkre proposed a phenome
logical model for mice population that successfully rep
duces some features of Hantavirus propagation@9#. In par-
ticular that model explores the relation between resource
the medium, carrying capacity, and the spread of the in
tion in the rodent colony. Herein we study the effects
seasonality in that model. Our motivation is not only to pr
vide more realism to the model, but also to investigate
counterintuitive effects that dynamic alternation may ca
1063-651X/2004/69~2!/021906~8!/$22.50 69 0219
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in a biological system. Brownian motors@10# and switching-
induced morphogenesis@11# are examples that show that a
ternation in time of ‘‘uninteresting’’ dynamics may produc
‘‘interesting’’ outcomes. Along these lines, we will show th
alternation of seasons, neither of which by itself fulfills th
environmental requirements on the carrying capacity
spreading of the infection, may produce an outbreak of
disease. The mechanism driving this behavior is the interr
tion of the relaxation process that equilibrates the mo
population from season to season: if the relaxation time
the population becomes longer than the duration of seas
the disease spreads.

The paper is organized as follows. In Sec. II we brie
review the model for mouse populations introduced in R
@9#. In Sec. III we explain how seasonality is introduced
that model and analyze the conditions for Hanta outbreak
take place due to the alternation of seasons. The exact s
tion of the model and a particular example that illustrates
phenomenology are given in Sec. IV. The stability of o
solutions is discussed in Sec. V. Finally, in Sec. VI, we su
marize the main conclusions and propose some directions
future work.

II. THE MODEL

The model introduced in Ref.@9# for the temporal evolu-
tion of a population of mice subjected to the Hantavirus
fection reads

dMS

dt
5bM2cMS2

MSM

K
2aMSMI , ~1a!

dMI

dt
52cMI2

MIM

K
1aMSMI , ~1b!

whereMS andMI are the population densities of susceptib
and infected mice, respectively,M5MS1MI is the total
population of mice, anda, b, c, andK are positive constants
The terms on the right-hand sides of Eqs.~1a! and~1b! take
into account the following processes: births with rate co
stantb, depletion by death with rate constantc, competition
for the resources in the medium characterized by the carry
capacityK, and transmission of the infection with rate coe
©2004 The American Physical Society06-1
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ficient a. Note that competition is less important when t
carrying capacity is larger. The competition is assumed to
proportional to the probability of an encounter between
mouse of the population of interest (MS or MI) and any
other mouse (M ). It is worth noting that infected pregnan
mice produce Hanta antibodies that keep their fetus free f
the infection; that is,all mice are born susceptible@1#, as
indicated by the absence of a birth term in Eq.~1b!. Note
also the absence of a recovery term in the model since
mentioned earlier, mice become chronically infected by
virus.

The system of Eqs.~1a! and ~1b! has four equilibrium
points. Two of them are irrelevant for the analysis: the n
stateMI5MS50, which is always unstable ifb.c ~a con-
dition that we will assume throughout this paper!, and a
meaningless state withMI,0 for any value of the param
eters. The other two equilibria are

MS5K~b2c!, MI50, ~2!

MS5
b

a
, MI5K~b2c!2

b

a
. ~3!

The stability of the equilibrium points Eqs.~2! and ~3! de-
pends on the value of the carrying capacity. IfK,Kc
5b/a(b2c) then Eq.~2! is stable and Eq.~3! unstable. If
K.Kc it is the other way around. That is, when the availa
resources,K, are below the critical value,Kc , the infection
does not propagate in the colony, the whole population
mice grows healthy, and its size increases proportion
with those resources. IfK surpassesKc the virus spreads in
the colony, the susceptible mouse population saturates,
the fraction of infected mice becomes larger asK increases
~see Fig. 1!.

III. SEASONAL ALTERNATION

The Four Corners Region, where an important numbe
cases of Hantavirus pulmonary syndrome have occurred,
a desert climate. The largest climate variations within t
region come from periods of rain and of drought. With som
delay, rainy and dry episodes lead to seasons that we will
‘‘mild’’ and ‘‘harsh,’’ and we will assume alternation in time
between these two seasons. It is important to remark th
two-season assumption is not crucial, and that the ana
with four seasons is also straightforward within the form
ism introduced herein. During each of the two seasons un
consideration we assume there to be no climate variation
that each season can be characterized by a set of t
independent parameters$r i%5$ai ,bi ,ci ,1/Ki%, where i
51,2. We implement square-periodic season alterna
where the duration of each season isT/2. In dimensioned
units T is thus one year. Note that other alternation
quences, e.g., different durations of the seasons~even with
more of them fitting withinT), or even random switching
between seasons, do not qualitatively change the phen
enology.

Any quantityr(t) alternating in the way described abov
can be written as
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r~ t !5r11r2m~ t !, ~4!

wherer65 1
2 (r16r2) andm(t) is a periodic square wave

m~ t !5H 1 : 0,t,
T

2

21 :
T

2
,t,T.

~5!

There are unfortunately very few experimental data availa
for the model parameters, which we thus choose to be c
sistent with data when possible but otherwise select on
basis of reasonable qualitative arguments. We thus sup
the following conditions for the sets$r i% according to sea-
sonality:

a1,a2 , b1,b2 , c1,c2 , K1.K2 , ~6!

where 1 stands for the mild season and 2 for the harsh
The biological motivation for these inequalities is the follow
ing. The harsh season provides less resources for the co
than the mild season (K2,K1), and as a consequence th
death rate is higher (c2.c1). The transmission rate is als
larger (a2.a1) under the assumption that fights for th
available resources increase in harsh times.

While these inequalities forK, c, and a are intuitively
straightforward, our assumption that the birth rate is lar
during the harsh season (b2.b1) ~albeit by a very small
amount, cf. below! requires further argumentation. On
might interpret the parameterb not as a simple birth rate bu
rather as the rate at which new mice able to propagate

FIG. 1. Stable equilibrium population of susceptible~solid line!
and infected~dashed line! mice as a function of the resource
present in the medium,K. The values of the parameters are t
same as those used in Ref.@9#: a50.1, b51, and c50.5. The
value of the critical carrying capacity isKc520.
6-2
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disease become part of the population~only adult mice seem
to fight!. Due to the period of maturation, the parameteb
would then reflect the birth rate but at an earlier time@1#. A
better way to deal with this time shift might be to introdu
an explicit delay in the equations of evolution, but this wou
render the model far more complex than warranted in v
of other simplifying assumptions that have been ma
Equivalently, we might want to subdivideT more finely. As
mentioned earlier, at least in the adiabatic limit this wou
not affect the qualitative outcome. It will be shown later th
our simplified assumption leads to a situation with high
population toward the end of the mild season and low
population toward the end of the harsh one, in agreem
with the available data@1,2#. We do note that given the othe
parameter inequalities, the assumptionb1,b2 is necessary
for the model to lead to the effect that we wish to illustra
herein. If the assumption turns out to be invalid, then
mechanism that we propose would require the reversa
another inequality, which could perhaps also be argued
biological grounds. For example, one might find that fighti
among mice is driven mainly by mating competition, whi
would lead toa1.a2. These facts can, of course, only b
ascertained one way or another through experimental d
which is unfortunately not available at this point. We do no
that the magnitude of the reversal assumed in our model
be very small; in our later application we takeb2 to be only
1.4% greater thanb1.

Our critical assumption is that (K1 ,K2),min(Kc1,Kc2),
i.e., that the resources areat all times~during both seasons!
belowthe minimum critical threshold that triggers the prop
gation of the disease. We will show that nevertheless i
possible for the infection to spread. This is the main point
our work.

The equilibrium populations of the susceptible and
fected mice are determined by the sets of values$r i%. When
switching from season to season, the populations evolve
ing to reach a new equilibrium. Therefore, the dynamics
driven by the competition between two characteristic tim
On the one hand there is anexternaltime scale determined
by the seasonal forcing,text5T/2. On the other hand, th
relaxation toward equilibrium after a switching of seaso
involves a relaxation time. The latter measures the time
quired for the mouse colony to relax to the equilibrium st
associated with$r j% after having been driven during the pr
vious season by the conditions$r i%, that is,t r( i→ j ) where
i , j 51,2. The internal time scale is defined as the faste
relaxation process, i.e.,t int5min@tr(i→j)#. ‘‘Fast’’ or ‘‘slow’’
seasonal alternation then refers to the comparison betw
these two time scales. Iftext@t int the mouse population ha
enough time to accommodate to the new conditions fr
season to season and relax to equilibrium. Moreover, s
we have imposed the condition that the resources at any
of the year are below the critical thresholdsKci , there will
be no infected mice. In the other limit,text!t i , seasonal
changes occur too fast, the relaxation process is interrup
and no equilibrium can be reached from season to seaso
this case an adiabatic elimination can be implemented@12#,
and m(t) in Eq. ~4! can be replaced by its average valu
^m(t)&50. Therefore, in the limit of fast season alternati
02190
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the system is driven by the set of averaged values$r1%
5$a1 ,b1 ,c1 ,(1/K)1%, and the critical carrying capacity i
given by Kc15b1 /a1(b12c1). As a consequence, it i
possible to find regions of parameters whereKc1 is smaller
than theeffectivevalue of the carrying capacity associate
with the averaged values,

F S 1

K D
1
G21

5F1

2 S 1

K1
1

1

K2
D G21

5
2K1K2

K11K2
, ~7!

and the infection propagates.
General conditions leading to these behaviors are gi

later in Sec. V, but the expressions are rather cumberso
Instead, here we choose a particular set of parameter
illustrate these points:

a15
1

4
, b151, c15

1

3
, ~8!

a254, b25
73

72
, c251. ~9!

These parameter choices lead toKc156 andKc2573/4, re-
spectively. Some important observations about these par
lar parameter choices are in order. For theai there seem to be
no experimental data, so these choices~subject to the in-
equality a2.a1) are rather arbitrary. The death ratesci are
separately not based on data~unavailable!, but are consisten
with the average reported lifetimes of 18 months. The s
sonal difference in the maturation rates is very sm
(;1%) but, as noted earlier, the inequalityb2.b1 is neces-
sary for the model. Again, we could not find specific data
these values. We do note that the chosen values lead to
rate of increase (b2c) that is larger in the mild season,b1
2c1@b22c2, in agreement with observations@1#.

The dynamics are completely determined once the va
of the carrying capacity during each season is specified.
cording to the previous discussion, these parameters ca
chosen such that the following conditions hold:

@~1/K !1#21.Kc1 , K1.K2 , K1,min~Kc1 ,Kc2!.

These conditions lead to the points (K1 ,K2) that fulfill the
seasonal requirements given by Eq.~6!, so that slow alterna-
tion of seasons leads to infection-free states while fast a
nation leads to Hanta outbreaks. This region is plotted in F
2 for two values of the periodT. In some of our calculations
we have chosen the particular point (K154,K251) for our
illustrations. This point satisfies the conditionsKi,Kci and
lies inside the epidemic region in both cases in the figure
the following section we illustrate the seasonality-induc
propagation of the disease for this particular point.

It is important to clarify a matter of terminology use
above and subsequently. When we refer to ‘‘fast’’ or ‘‘slow
alternation, or to ‘‘short’’ and ‘‘long’’ seasons, we do no
really mean thatT varies.T is to be thought of as one yea
Instead, we are talking about variations in the values of
relaxation timet int , determined by model parameter choice
relative to the fixed value of the seasonal durationtext
6-3
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5T/2. The terminology is thus simply a matter of analy
convenience because it is simpler to speak in terms of v
ing the single parameterT for a fixed set of system param
eters than it is to do the converse. The qualitative inform
tion conveyed either way is of course the same.

IV. THE CRITICAL PERIOD

So far we have determined that outbreaks of Hanta
duced entirely by seasonal changes can occur if the dura
of the seasons is short enough relative tot int . Now we es-
tablish the meaning of ‘‘short enough’’ quantitatively. Sin
Kc1 is strictly smaller than the effective value of the carr

FIG. 2. (K1 ,K2) regions of disease propagation due to seaso
alternation. The values of the other relevant parameters are giv
Eqs.~8! and~9!. The straight lines are common to all values of t
period T. The solid curve is for an extremely short period,T→0,
and the dashed curve is forT511. Every value ofK1 or K2 within
either enclosed area by itself doesnot satisfy the required environ
mental conditions that support spreading of the virus in the m
colony. Yet, those same points lead to outbreaks of Hanta u
seasonal alternation.
ar

n
T
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ing capacity, we assume that there is a finite value ofTc such
that for anyT,Tc the population of infected mice is greate
than zero, but for periods above this critical period the
fected population goes to zero. A more rigorous argument
the existence ofTc that does not rely on any of the assum
tions made in this section is given in Sec. V. Here, in orde
obtain the value of the critical period we solve the system
Eqs. ~1a! and ~1b!. In spite of its nonlinearities the system
can be solved analytically by means of a reciprocal trans
mation @13# and the following exact solution is obtained:

MI~ t,MI ,0 ,MS,0 ;$r%!5
MI ,0V~ t !

~Kg!aK211aMI ,0E
0

t

V~t!dt

,

~10a!

MS~ t,MI ,0 ,MS,0 ;$r%!5
KgM0egt

~V~ t !ect!
1

aK21

2
MI ,0V~ t !

~Kg!aK211aMI ,0E
0

t

V~t!dt

,

~10b!

where MI ,0 and MS,0 are the initial conditions forMI and
MS , respectively, and the following definitions have be
introduced:

V~ t !5e2ct
„M0~egt21!1Kg…aK21,

g5~b2c!, M05MI ,01MS,0 .

Because the external forcing due to the alternation of sea
is periodic, we search for a periodic solution. The values
MI ,0 and MS,0 compatible with the nonequilibrium periodi
solution can be obtained by evolving the system during
first half of a period under dynamics 1 and the second h
under dynamics 2, and forcing periodicity on the solutio
after a whole period of evolution, that is,

al
in

e
n

MI S T

2
,MI S T

2
,MI ,0 ,MS,0 ;$r1% D ,MSS T

2
,MI ,0 ,MS,0 ;$r1% D ;$r2% D5MI ,0 , ~11a!

MSS T

2
,MI S T

2
,MI ,0 ,MS,0 ;$r1% D ,MSS T

2
,MI ,0 ,MS,0 ;$r1% D ;$r2% D5MS,0 . ~11b!
ed

.
f
s of
In order to close the system in the nonequilibrium station
stateMI(t,T;$r1,2%) andMS(t,T;$r1,2%), the values ofMI ,0

andMS,0 that solve the system of Eqs.~11a! and~11b! must
be reintroduced in Eqs.~10a! and~10b!. As we will show in
Sec. V, the solution is not unique, but only one pair is no
negative and stable, and this is the solution at issue here.
critical period is then the largest value ofT satisfying the
condition
y

-
he

MI~ t,T;$r1,2%!.0 ~12!

~the solutionMI50 becomes unstable, see Sec. V!.
We illustrate the procedure with the example mention

above where the parameters are given by Eqs.~8! and ~9!,
and withK154 andK251. The results are shown in Figs
3–5. The values ofMI andMS as a function of the period o
the seasons are depicted in Fig. 3, where the population
6-4



as
ca

la
pu
d

t

b

ca

u-

od
a

ci

-

how-
are
f

our
the
of
oc-

f
t the

the
at
, it

int

ull

lin
o
a
-

nt
eriod

r-

arsh

OUTBREAKS OF HANTAVIRUS INDUCED BY SEASONALITY PHYSICAL REVIEW E69, 021906 ~2004!
the susceptible and infected mice at the end of each se
are given. As seen in that figure, the value of the criti
period for these particular values of theKi is Tc.11.67~see
Sec. V for a more detailed calculation of this value!. Note
that if the alternation is slow,T.Tc , all mice grow healthy.
On the other hand, if the alternation is faster than the re
ation time required by the colony to accommodate its po
lation from season to season,T,Tc , the virus spreads an
MI.0. Our specific sample system withT51 ~a ‘‘special’’
value in that it can be thought of as one year! lies well below
this critical value, in the ‘‘fast’’ alternation region. Note tha
in the limit T→0 the dynamics is driven by$r1% and the
populations of susceptible and infected mice are given
Eq. ~3! with a5a1 , b5b1 , c5c1 , and 1/K5(1/K)1 . We
emphasize that the carrying capacity is below its criti
threshold at any time.

In Fig. 4 we plot, for different period lengths, the sol
tions MI(t,T;$r1,2%) and MS(t,T;$r1,2%) as a function of
time through one period of evolution. The first semiperi
corresponds to the mild season and the second to the h
season. When seasons last long~left panel!, there are no
infected mice and the susceptible population simply os
lates between the two equilibrium states given by Eq.~2!.
For sufficiently short seasons~right panel!, there is propaga-
tion of the disease and the values ofMI and MS fluctuate
around the equilibrium points determined by Eq.~3! and the
set of parameters$r1%. Finally, when the period of the sea
sons is near, but below, the critical period~central panel!, the
infected population is small and the populationMI oscillates

FIG. 3. Population of susceptible~top! and infected~bottom!
mice vs the period of the seasons. The dashed and continuous
indicate the populations at the end of the mild and harsh seas
respectively. The critical period for which the virus begins to spre
due to seasonality isTc.11.67. The values of the relevant param
eters area151/4, b151, c151/3, K154, anda254, b2573/72,
c251, K251 for the mild and harsh seasons, respectively.
02190
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in a more pronounced manner. The associated graphs s
ing susceptible vs infected mice through one period
shown in Fig. 5. Note thatT51 indeed leads to a spread o
the disease. An explicit feature of the actual data that
model as shown in Fig. 4 captures is the observation that
infected and healthy mice population maxima are out
phase, and that the maximum of the infected population
curs within~near the end of! the harsh season@1#. This may
serve as ana posteriori indication that, in the absence o
experimental data to the contrary, our assumptions abou
values of the parameters may be biologically relevant.

V. STABILITY OF SOLUTIONS

In order to complete our analysis we need to ascertain
stability of our solutions, which requires an analysis th
goes beyond simply finding the solutions. For this purpose
is convenient to work with the variablesM5MS1MI and
MI . Addition of Eqs.~11a! and ~11b! with Eqs. ~10a! and
~10b! then yields the relation that determines the fixed po
of the Poincare´ map for the total number of mice@14#,

M ~T;M0!5M0 , ~13!

which yields two solutions. One is the uninteresting n
solution

M0,150, ~14!

es
ns,
d

FIG. 4. Population of susceptible~top! and infected~bottom!
mice vs time for a period of evolution. The values of the releva
parameters are the same as those used in Fig. 3. The critical p
is Tc.11.67. Left panel: Results for a very long period (T540).
Right panel: short period (T51). Central panel: Results for a nea
critical period (T510). In all cases the first semiperiod~shadowed
region! corresponds to the mild season and the second to the h
one.
6-5
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and the other is

M0,25
~b12c1!K1

11
~e(c22b2)T/221!@~b12c1!K12~b22c2!K2#

~b22c2!~e(c11c22b12b2)T/221!K2

.

~15!

Linearization of the Poincare´ map about these solutions
Mi5M0,i1dMi , leads to

M ~T;M1!5e2(c11c22b12b2)T/2dM11o~dM1
2! ~16!

and

M ~T,M2!5M0,21e(c11c22b12b2)T/2dM21o~dM2
2!.

~17!

Thus the null solution is unstable and the closed orbit sta
for all finite periods providedb11b2.c11c2, i.e., provided
the death rate does not overwhelm the birth/maturation r
In our explicit examples we have implemented this con
tion.

With this condition on the parameters, we can now use
stable solution forM (t) and substitute it in the equation fo
MI(t), which can now be written as the set of equations

FIG. 5. Population of susceptible mice vs infected mice~both
normalized to their respective maxima! for a period of evolution.
The values of the relevant parameters are the same as those
in Figs. 3 and 4. For a very long period (T540) there are no
infected mice, and the susceptible mouse population oscillate
and down the vertical axis, indicated by a bold solid line. Stric
speaking, the solid line should be drawn on the right axis si
lim

MI→0
MI /max(MI)→1. However, we have placed it on the le

axis to emphasize the actual valueM0→0. For a near-critical pe-
riod (T510) the populations undergo a cyclic variation as indica
by the dash-dotted curve. This cyclic variation becomes narro
with decreasing period, e.g., the dashed curve forT51. As T→0
the cycle reduces to a single point corresponding to the values g
in Eq. ~3! with the average parameters.
02190
le
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e

dMI

dt
52Fc2S a2

1

K D M ~u!GMI2aMI
2 , ~18a!

du

dt
51. ~18b!

Our goal is to establish the conditions that lead to the sta
ity of a solution involving a finite positive number of in
fected mice. While it might be desirable to find all the sol
tions of Eqs.~18a! and ~18b! and establish their stability a
we did for M, this is analytically intractable and not nece
sary. It is sufficient~as it would have been forM ) to estab-
lish the stability properties of the null solutionMI50; if this
solution isunstable, there will be an epidemic. We therefor
only need to consider the system of equations lineari
about the null solution, which leads to the reduced probl

dMI

dt
52Fc2S a2

1

K D M ~ t !GMI . ~19!

This equation can again be solved exactly and thus ag
allows construction of a Poincare´ map. We obtain

MI~T/2;MI ,0!5e2(b12a1b1K11a1c1K1)T/2

3@~b12c1!K1# (12a1K1)

3@e(c12b1)T/2~b1K12c1K12M0!

1M0#a1K121MI ,0 , ~20a!

MI~T;MI ,0!5e2(b22a2b2K21a2c2K2)T/2

3@~b22c2!K2# (12a2K2)

3@e(c22b2)T/2~b2K22c2K22M08!

1M08#a2K221MI~T/2;MI ,0!, ~20b!

whereMI ,0 is, as before, the initial condition for the infecte
mice, andM0 andM08 in the second equation are shortha
notations, respectively forM (T;M0) andM (T/2;M0) for the
stable orbit. We can find the fixed points of the Poincare´ map
by solving for the fixed point,

MI~T,MI ,0!5MI ,0 . ~21!

This equation has the unique solution

MI ,050, ~22!

as expected. A small deviation of the Poincare´ map around
this null solution~no further linearization is necessary sin
the map itself is linear! leads to

m[
MI~T,MI ,0!

MI ,0
5A13S A2

A3
D a2K2

3S A4

A5
D a1K1

. ~23!

Here

A1[e2(b11b22a1g1K12a2g2K2)T/2~g1K1!2a1K1~g2K2!2a2K2,
~24!
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A2[g2K2@g1~e2g2T/221!K11g2e2g2T/2~e2g1T/221!K2#,
~25!

A3[g2~e2g1T/221!K21g1e2g1T/2~e2g2T/221!K1 .
~26!

A4[g1K1@g2~e2g1T/221!K21g1e2g1T/2~e2g2T/221!K1#,
~27!

A5[g1~e2g2T/221!K11g2e2g2T/2~e2g1T/221!K2 ,
~28!

and

gi[~bi2ci !. ~29!

If m.1, the null solution is unstable. Note that the sys-
tem of Eqs.~18a! and ~18b! can be written asd(MI ,u)/dt
5 f @(MI ,u)#, where f @(MI ,u)# is piecewise continuously
differentiable, with discontinuities only in the variableu at
the integer and half-integer multiples ofT. Therefore, be-
tween the discontinuities off @(MI ,u)#, the solution of the
differential equation exists, is unique, and is smooth. Si
we take the final point of every semiperiod as the init
condition for the next one, we can claim existence a
uniqueness of the solution for all values oft, as well as
tic

n
n

e

n-
ly.

fo
w
f t
fa
n
h
b

02190
e
l
d

continuity for everyt. This implies that ifMI.0, it will
remain positive for all times. Since the system has the uni
fixed point MI50, our nonzero initial condition will not
encounter any steady state. Furthermore,MI,M , and since
M is bounded~as we established, it performs a stable clos
orbit!, MI is bounded. We can thus conclude that form
.1, MI must perform a closed orbit in a region of the pha
space with 0,MI,M for all time.

We have therefore establishedm.1 as the general condi
tion for an outbreak to occur in our seasonal environme
This condition is entirely general, i.e., it holdsfor all pos-
sible values of the model parameters and for all possi
values of the period. We can thus easily establish whether
not a given set of parameters will lead to an epidemic. F
the particular values of the parametersai ,bi ,ci that we have
chosen for our illustrations in the previous sections, we fi
that seasonality-induced outbreak forK154, K251 occurs
only in the open interval 0,T,Tc , with Tc.11.67 ~cf.
Fig. 2!.

It is interesting to ascertain the behavior of the system
the limit T→0, since we discussed this behavior earlier as
adiabatic elimination limit@cf. Eq. ~7!#. For this case we can
expandm in a McLaurin series in the period and retain on
the first order:
m512
@~b11b2!K11~b1b22~a11a2!~b11b22c12c2!K1!K2#

2~K11K2!
T1o~T2!. ~30!
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In this casem.1 if and only if

K1.2
~b11b2!K2

b11b22~a11a2!~b11b22c12c2!K2
, ~31!

which is exactly the condition obtained with an adiaba
elimination.

Finally, we stress that the conditionm.1 can be used to
calculate the conditions for the outbreak to occur for a
combination of parameters, not only those we have chose
focus on in this paper and that lead to 0,T,Tc with Tc
.11.67. In particular, it is interesting to note that for th
particular values of thea’s, b’s andc’s used in our illustra-
tion, when the period exceeds the valueT.242.73 there are
no values ofK1 ,K2 that lead to an outbreak, i.e., the e
closed region illustrated in Fig. 2 shrinks away complete

VI. CONCLUSIONS

By introducing seasonality in a paradigmatic model
Hantavirus propagation in mice colonies, we have sho
that the alternation of seasons may cause outbreaks o
disease. The striking feature of that behavior lays in the
that neither season satisfies the conditions for the infectio
spread in terms of the availability of resources. The mec
nism responsible for the phenomenon is the competition
y
to

r
n
he
ct
to
a-
e-

tween two time scales: an external one, the duration o
season, and an internal one, the relaxation time for the mo
colony to equilibrate its population from season to seas
We have shown that if the relaxation time were shorter th
the duration of the seasons, no propagation of Hantav
would occur. On the other hand, if the relaxation proces
interrupted by the seasonal alternation, the disease spre
We have analyzed the general conditions for which the p
nomenon occurs, and established the stability of the solut
that characterize an outbreak. Moreover, we have illustra
the mechanism with a particular example based on ph
cally reasonable parameter choices consistent with d
where available.

This work may help to clarify the reported relation b
tween climate and propagation of Hanta in mice populatio
However, to elucidate whether the proposed phenomenon
tually takes place in nature we depend on data that unfo
nately are not available in the literature. One can envis
further modifications of the model that may improve its fe
tures, such as, for example, the inclusion of spatial dep
dence@9,13#, of explicit delay effects, or of noisy contribu
tions to the dynamics. Finally, we stress that the general i
underlying the mechanism may be extended to other syst
where seasonality plays a relevant role. Work along th
directions is in progress.
6-7
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