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Outbreaks of Hantavirus induced by seasonality
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Using a model for rodent population dynamics, we study outbreaks of Hantavirus infection induced by the
alternation of seasons. Neither season by itself satisfies the environmental requirements for propagation of the
disease. This result can be explained in terms of the seasonal interruption of the relaxation process of the
mouse population toward equilibrium, and may shed light on the reported connection between climate varia-
tions and outbreaks of the disease.
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[. INTRODUCTION in a biological system. Brownian motof$0] and switching-
induced morphogenesi41] are examples that show that al-

Hantaviruses are rodent-borne zoonotic agents that maigrnation in time of “uninteresting” dynamics may produce
cause diseases in humans such as hemorrhagic fever wittiiteresting” outcomes. Along these lines, we will show that
renal Syndrome and Hantavirus pu|monary syndr(ﬁm.e3]_ alternation of seasons, neither of which by itself fulfills the
Hantaviruses have been identified at an increasing rate i@nvironmental requirements on the carrying capacity for
recent years, and as of now about thirty different ones havéPreading of the infection, may produce an outbreak of the
been discovered throughout the world. One of these, the Siflisease. The mechanism driving this behavior is the interrup-
Nombre virus, was not isolated until 1993 after an outbreakion of the relaxation process that equilibrates the mouse
in the Four Corners region of the USA,2]. The host of this population from season to season: if the relaxation time of
particularly dangerous virus is the deer mouBefomyscus the population becomes longer than the duration of seasons,
maniculatus the most numerous mammal in North America. the disease spreads.
The virus produces a chronic infection in the mouse popula- The paper is organized as follows. In Sec. Il we briefly
tion, but it is not lethal to them. It is believed that transmis-review the model for mouse populations introduced in Ref.
sion in the rodent population is horizontal and due to fights[9]- In Sec. lll we explain how seasonality is introduced in
and that the subsequent infection of humans, where the mofbat model and analyze the conditions for Hanta outbreaks to
ta“ty rate can be as h|gh as 50%, is produced by their Contaéﬂke place due to the alternation of seasons. The exact solu-
with the excreta of infected mice. Moreover, so far there istion of the model and a particular eXampIe that illustrates the
no vaccine or effective drug to prevent or treat the HantaviiPhenomenology are given in Sec. IV. The stability of our
rus pulmonary syndrome. Therefore, a major effort has beefiolutions is discussed in Sec. V. Finally, in Sec. VI, we sum-
launched to understand the population dynamics of dedharize the main conclusions and propose some directions for
mouse colonies in order to design effective prevention polifuture work.
cies[1].

It has been noted that environmental conditions are di- Il. THE MODEL
rectly connected to outbreaks of Haffd. For instance, the . .
1993y and 1998 outbreaks occurring in the Four Corners Re- The model mt_roduced_m Relfg] for the temporal eyolu-_
gion have been associated with the so-called EloNiauth- t|on.of a population of mice subjected to the Hantavirus in-
ern oscillation[2]. Related to this and other such observa—feCt'on reads
tions, the effects of seasonality in ecological systems have

been a subject of recent inter¢4t5]. Multiyear oscillations d_MS: bM—cMg— M —aMgM,, (1a)
of mammal populationgg], prey-predator seasonal dynamics dt
[7], and persistence of parasites in plants between sef8pns
re examples that illustrate the importance of nality in dM, MM
are examples that illustrate the importance of seasonality _
. . ——=—CcM,— ——+aMsM,, (1b)
population dynamics. dt K

Recently, Abramson and Kenkre proposed a phenomeno-
logical model for mice population that successfully repro-whereMgandM, are the population densities of susceptible
duces some features of Hantavirus propagaf®nIn par- and infected mice, respectiveliyl =Mg+M, is the total
ticular that model explores the relation between resources ipopulation of mice, and, b, ¢, andK are positive constants.
the medium, carrying capacity, and the spread of the infecThe terms on the right-hand sides of E¢ka) and (1b) take
tion in the rodent colony. Herein we study the effects ofinto account the following processes: births with rate con-
seasonality in that model. Our motivation is not only to pro-stantb, depletion by death with rate constantcompetition
vide more realism to the model, but also to investigate thdor the resources in the medium characterized by the carrying
counterintuitive effects that dynamic alternation may causeapacityK, and transmission of the infection with rate coef-
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ficient a. Note that competition is less important when the BT 7 1

carrying capacity is larger. The competition is assumed to be

proportional to the probability of an encounter between a

mouse of the population of interesMg or M) and any /

other mouse I1). It is worth noting that infected pregnant

mice produce Hanta antibodies that keep their fetus free from 10 /

the infection; that isall mice are born susceptibld], as

indicated by the absence of a birth term in Efjb). Note /

also the absence of a recovery term in the model since, as - 1

mentioned earlier, mice become chronically infected by the !

virus. 7
The system of Eqs(la and (1b) has four equilibrium Sk 1

points. Two of them are irrelevant for the analysis: the null

stateM,=Mg=0, which is always unstable >c (a con-

dition that we will assume throughout this papeand a

meaningless state withl; <O for any value of the param-

eters. The other two equilibria are 0

Ms=K(b—c), M,=0, 2

b b
Ms=2. Mi=K(b—c)—_. 3
FIG. 1. Stable equilibrium population of susceptikdelid line)
and infected(dashed ling mice as a function of the resources

. . present in the mediunK. The values of the parameters are the
pends on the value of the carrying capacity. KK, same as those used in R¢®]: a=0.1, b=1, andc=0.5. The

:b/a(b._.c) then Eq.(2) is stable and_Eq(S) unstable._lf value of the critical carrying capacity .= 20.
K>K_, it is the other way around. That is, when the available
resourcesK, are below the critical valu&, the infection
does not propagate in the colony, the whole population of
mice grows healthy, and its size increases proportionall
with those resources. K surpasse& . the virus spreads in
the colony, the susceptible mouse population saturates, and

The stability of the equilibrium points Eq$2) and (3) de-

p()=py+p_u(t), (4)

3(/vherepi= 2(p1*p,) and u(t) is a periodic square wave

T
the fraction of infected mice becomes largerkagncreases 1 Loot<y
(see Fig. 1 2
' u(t)= T )
-1 @ —<t<T.
I1l. SEASONAL ALTERNATION 2

The Four Corners Region, where an important number ofrhere are unfortunately very few experimental data available
cases of Hantavirus pulmonary syndrome have occurred, hagr the model parameters, which we thus choose to be con-
a desert climate. The largest climate variations within thissistent with data when possible but otherwise select on the
region come from periods of rain and of drought. With somep;asis of reasonable qualitative arguments. We thus suppose

delay, rainy and dry episodes lead to seasons that we will cajhe following conditions for the set&;} according to sea-
‘mild” and “harsh,” and we will assume alternation in time  gonality:

between these two seasons. It is important to remark that a

two-season assumption is not crucial, and that the analysis a;<a,, bi<b,, c¢1<c,, Ki>K,, (6)

with four seasons is also straightforward within the formal-

ism introduced herein. During each of the two seasons undeavhere 1 stands for the mild season and 2 for the harsh one.
consideration we assume there to be no climate variations, sthe biological motivation for these inequalities is the follow-
that each season can be characterized by a set of timég. The harsh season provides less resources for the colony
independent parametergp;}={a;,b;,c;,1/K;}, where i than the mild seasonK(,<K;), and as a consequence the
=1,2. We implement square-periodic season alternatiomleath rate is highercg>c,). The transmission rate is also
where the duration of each seasonTi®. In dimensioned larger @,>a;) under the assumption that fights for the
units T is thus one year. Note that other alternation se-available resources increase in harsh times.

qguences, e.g., different durations of the seadenen with While these inequalities foK, ¢, and a are intuitively
more of them fitting withinT), or even random switching straightforward, our assumption that the birth rate is larger
between seasons, do not qualitatively change the phenorduring the harsh seasor{>b;) (albeit by a very small

enology. amount, cf. below requires further argumentation. One
Any quantity p(t) alternating in the way described above might interpret the parametérnot as a simple birth rate but
can be written as rather as the rate at which new mice able to propagate the
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disease become part of the populationly adult mice seem the system is driven by the set of averaged val{jes}
to fight). Due to the period of maturation, the paramdier ={a,,b,,c,,(1/K).}, and the critical carrying capacity is

-1 1

2

)

— 4 — =
Ki Ksp Ki+Ky'

1 1 ”1_ 2K, K,

would then reflect the birth rate but at an earlier tifh¢ A given by K., =b,/a,(b,—c.). As a consequence, it is
better way to deal with this time shift might be to introduce possible to find regions of parameters whire is smaller

an explicit delay in the equations of evolution, but this wouldthan theeffectivevalue of the carrying capacity associated
render the model far more complex than warranted in viewwith the averaged values,

of other simplifying assumptions that have been made.

Equivalently, we might want to subdivide more finely. As 1

mentioned earlier, at least in the adiabatic limit this would K .

not affect the qualitative outcome. It will be shown later that

our simplified assumption leads to a situation with highesiand the infection propagates.

population toward the end of the mild season and lowest General conditions leading to these behaviors are given
population toward the end of the harsh one, in agreemenhter in Sec. V, but the expressions are rather cumbersome.
with the available datgl,2]. We do note that given the other |nstead, here we choose a particular set of parameters to
parameter inequalities, the assumptiop<b, is necessary jllustrate these points:

for the model to lead to the effect that we wish to illustrate

herein. If the assumption turns out to be invalid, then the 1 1

mechanism that we propose would require the reversal of al:Z' b;=1, Cl:§! 8)
another inequality, which could perhaps also be argued on

biological grounds. For example, one might find that fighting 73

among mice is driven mainly by mating competition, which a,=4, b2=7—2, c,=1. 9

would lead toa;>a,. These facts can, of course, only be

asqertained one way or anot_her throug_h ex_perimental datgese parameter choices leadktg, =6 andK .,=73/4, re-
which is unfortunately not available at this point. We do notegpe qfiyely. Some important observations about these particu-
that the magmt_ude of the reversal _assumed in our model cq r parameter choices are in order. For ghéhere seem to be

be very small; in our later application we takg to be only  ,; ‘aynerimental data, so these choi¢ssbject to the in-

1.4% gre_a_ter thab,. . ) equalitya,>a;) are rather arbitrary. The death ratgsare

. Our critical assumption is thatk(,K;) <min(Ke1 Keo),  separately not based on ddtmavailable, but are consistent
i.e., that the_ r_esource_s_ameall tlmes(durlng bothseasons ity the average reported lifetimes of 18 months. The sea-
belowthe minimum critical threshold that triggers the propa-gonal difference in the maturation rates is very small

gation of the disease. We will show that nevertheless it is(wl%) but, as noted earlier, the inequality> b, is neces-

ggf?/i/bolrekfor the infection to spread. This is the main point 0fsary for the model. Again, we could not find specific data for

_ . ) . these values. We do note that the chosen values lead to a net
The equilibrium populations of the susceptible and in-

i . rate of increasel{—c) that is larger in the mild seasoh;
fected mice are determined by the sets of valygs. When —c¢,>b,—c,, in agreement with observatios].

switching from season to season, the populations evolve try- The dynamics are completely determined once the value

Ing to reach a new e'q.whbnum. Therefore, the dyngm!cs 'of the carrying capacity during each season is specified. Ac-
driven by the competition between two characteristic imesyq qinq 10 'the previous discussion, these parameters can be
On the one hand there is @axternaltime scale determined chosen such that the following conditions hold:

by the seasonal forcind.,=T/2. On the other hand, the

relaxation toward equilibrium after a switching of seasons [(1K), ] >Kep, Ki>K,y, Ki<min(Ke,Ke).
involves a relaxation time. The latter measures the time re-

quired for the mouse colony to relax to the equilibrium stateThese conditions lead to the point€,(,K,) that fulfill the
associated withp;} after having been driven during the pre- seasonal requirements given by E8), so that slow alterna-
vious season by the conditiofg;}, that is,t,(i—]j) where tion of seasons leads to infection-free states while fast alter-
i,j=1,2. Theinternal time scale is defined as the fastestnation leads to Hanta outbreaks. This region is plotted in Fig.
relaxation process, i.et,,;=min[t,(i—j)]. “Fast” or “slow” 2 for two values of the period. In some of our calculations
seasonal alternation then refers to the comparison betweeme have chosen the particular poir€,(=4K,=1) for our
these two time scales. tf,>t;,; the mouse population has illustrations. This point satisfies the conditios<K.; and
enough time to accommodate to the new conditions froniies inside the epidemic region in both cases in the figure. In
season to season and relax to equilibrium. Moreover, sincthe following section we illustrate the seasonality-induced
we have imposed the condition that the resources at any timgropagation of the disease for this particular point.

of the year are below the critical thresholds;, there will It is important to clarify a matter of terminology used
be no infected mice. In the other limit,<<t;, seasonal above and subsequently. When we refer to “fast” or “slow”
changes occur too fast, the relaxation process is interruptedlternation, or to “short” and “long” seasons, we do not
and no equilibrium can be reached from season to season. teally mean thaf varies.T is to be thought of as one year.
this case an adiabatic elimination can be implemenie, Instead, we are talking about variations in the values of the
and u(t) in Eqg. (4) can be replaced by its average value,relaxation timet;,;, determined by model parameter choices,
(m(t)y=0. Therefore, in the limit of fast season alternationrelative to the fixed value of the seasonal duratigg,
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. i EL A e e B S B ing capacity, we assume that there is a finite valu€ ouch
i ] that for anyT<T, the population of infected mice is greater
7__ ] than zero, but for periods above this critical period the in-
6 _ fected population goes to zero. A more rigorous argument for
L § the existence of ; that does not rely on any of the assump-
5 . tions made in this section is given in Sec. V. Here, in order to
- 1 obtain the value of the critical period we solve the system of
K14‘ 7 Egs. (1@ and (1b). In spite of its nonlinearities the system
3'_ ] can be solved analytically by means of a reciprocal transfor-
L mation[13] and the following exact solution is obtained:
2 - -
- ’ . M t
1+ - M (t, M) 0,Msoi{p}) = L : :
0- . | . [ . | . [ . | , | . [ , 1 (Kg)aK71+aM|10J’OQ(7)dT
0 1 2 3 4 5 6 7 8
K (10a
2
. . . KgMged!
FIG. 2. (K;,K,) regions of disease propagation due to seasonal Mg(t,M, 9, Msoi{p})= ———71—
alternation. The values of the other relevant parameters are given in ’ ’ (Q(t)ehar=1
Egs.(8) and(9). The straight lines are common to all values of the
period T. The solid curve is for an extremely short peridd;-0, M, oQ (1)
and the dashed curve is for=11. Every value oK or K, within - : . ,
either enclosed area by itself doest satisfy the required environ- (Kg)3 1+am, Of Q(ndr
mental conditions that support spreading of the virus in the mice “Jo

colony. Yet, those same points lead to outbreaks of Hanta upon (10
seasonal alternation.
where M, o and Mgq are the initial conditions foiM, and

=T/2. The terminology is thus simply a matter of analytic Mg, respectively, and the following definitions have been
convenience because it is simpler to speak in terms of varyintroduced:
ing the single parametéer for a fixed set of system param- _ _
eters than it is to do the converse. The qualitative informa- O(t)=e *"Mo(e'=1) +Kg)* ™,
tion conveyed either way is of course the same. g=(b—c), Mo=M,¢+Msgp.
Because the external forcing due to the alternation of seasons
is periodic, we search for a periodic solution. The values of

So far we have determined that outbreaks of Hanta inM, ; and Mg, compatible with the nonequilibrium periodic
duced entirely by seasonal changes can occur if the duratiosolution can be obtained by evolving the system during the
of the seasons is short enough relative;jp. Now we es- first half of a period under dynamics 1 and the second half
tablish the meaning of “short enough” quantitatively. Since under dynamics 2, and forcing periodicity on the solutions
K.+ is strictly smaller than the effective value of the carry- after a whole period of evolution, that is,

IV. THE CRITICAL PERIOD

T T T
M|(§7M|(§,M|,0,Ms,oi{ﬁ71})yMs(E,MLovMS,o;{Pl})i{Pz}) =M o, (113
T T T
Mgl E,M| EvMI,OvMS,O;{pl} Mg §,M|,0aMs,0;{P1} P2t | =Msgp. (11b
|
In order to close the system in the nonequilibrium stationary M(t,T:{p12)>0 (12)

stateM,(t,T;{p12}) andMg(t,T;{p12}), the values oM, o

andM s that solve the system of Eq&l1a and(11b) must  (the solutionM,;=0 becomes unstable, see Se¢. V

be reintroduced in Eq$10g and(10b). As we will show in We lllustrate the procedure with the example mentioned
Sec. V, the solution is not unique, but only one pair is non-above where the parameters are given by Egsand (9),
negative and stable, and this is the solution at issue here. Tland withK;=4 andK,=1. The results are shown in Figs.
critical period is then the largest value ®fsatisfying the 3-5. The values o, andM g as a function of the period of
condition the seasons are depicted in Fig. 3, where the populations of
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0ol 1 0.065 |
-0.05
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FIG. 3. Population of susceptibigop) and infected(bottom) FIG. 4. Population of susceptibiéop) and infected(bottom

mice vs the period of the seasons. The dashed and continuous ling§ice vs time for a period of evolution. The values of the relevant
indicate the populations at the end of the mild and harsh seasonggrameters are the same as those used in Fig. 3. The critical period
respectively. The critical period for which the virus begins to spreadg T.~11.67. Left panel: Results for a very long perioii=40).
due to seasonality i§.=11.67. The values of the relevant param- Right panel: short periodl(=1). Central panel: Results for a near-
eters area; =1/4, b, =1, ¢,=1/3, Ky =4, anda; =4, b,=73/72,  cyitical period (T=10). In all cases the first semiperiéshadowed
c2=1, Kp=1 for the mild and harsh seasons, respectively. region corresponds to the mild season and the second to the harsh
. . . one.
the susceptible and infected mice at the end of each season
are given. As seen in that figure, the _value of the criticali, 5 more pronounced manner. The associated graphs show-
period for these particular values of theis Tc=11.67(see g sysceptible vs infected mice through one period are
Sec. V for a more detailed calculation of this valublote  ¢pown in Fig. 5. Note thaf=1 indeed leads to a spread of
that if the alternation is slowT>T¢, all mice grow healthy. e gisease. An explicit feature of the actual data that our
On the other hand, if the alternation is faster than the relaxy,gdel as shown in Fig. 4 captures is the observation that the
ation time required by the colony to accommodate its popUjnfected and healthy mice population maxima are out of
lation from season to seasoR=Tg, the virus spreads and ppase, and that the maximum of the infected population oc-
M,>0. Our specific sample system wilh=1 (a “special curs within(near the end ofthe harsh seasdr]. This may
value in that it can be thought of as one yeis well below  serve as ara posteriori indication that, in the absence of
this critical value, in the “fast” alternation region. Note that experimental data to the contrary, our assumptions about the

in the limit T—0 the dynamics is driven byp.} and the yajyes of the parameters may be biologically relevant.
populations of susceptible and infected mice are given by

Eq.(3) witha=a, , b=b,,c=c,, and 1IK=(1/K), . We

emphasize that the carrying capacity is below its critical

threshold at any time. In order to complete our analysis we need to ascertain the
In Fig. 4 we plot, for different period lengths, the solu- stability of our solutions, which requires an analysis that

tions M (t,T;{p12}) and Mg(t,T;{p1 ) as a function of goes beyond simply finding the solutions. For this purpose, it

time through one period of evolution. The first semiperiodis convenient to work with the variabldd =Mg+ M, and

corresponds to the mild season and the second to the harsh, . Addition of Egs.(118 and (11b with Egs. (108 and

season. When seasons last lofeft pane), there are no (10b) then yields the relation that determines the fixed point

infected mice and the susceptible population simply oscilof the Poincarenap for the total number of mide 4],

lates between the two equilibrium states given by &j.

For sufficiently short seasorigght pane), there is propaga- M(T;Mg)=My, (13

tion of the disease and the values Mf and Mg fluctuate

around the equilibrium points determined by E8). and the  which vyields two solutions. One is the uninteresting null

set of parameter§p . }. Finally, when the period of the sea- solution

sons is near, but below, the critical peri@mntral paneg| the

infected population is small and the populatigh oscillates Mo 1=0, (14

V. STABILITY OF SOLUTIONS
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N\ aM, _

W dt

1

c—

1 2
a— E)M(a)}M,—aM , (183

—;‘:"".
-
Z
Z

\
\ 3\ d_1
\ dt

-"_-
”~

P
-
.
7

(18b)

. Our goal is to establish the conditions that lead to the stabil-
. ity of a solution involving a finite positive number of in-
fected mice. While it might be desirable to find all the solu-
AL tions of Egs.(189 and (18b) and establish their stability as
/' '\‘ \\.\ we did for M, this is analytically intractable and not neces-

\\ “ sary. It is sufficientas it would have been fdvl) to estab-

- lish the stability properties of the null solutidvi, = 0; if this

N - solution isunstable there will be an epidemic. We therefore
only need to consider the system of equations linearized
0 1 about the null solution, which leads to the reduced problem

M,/ max(My)

M,/ max(M)) dMm,
dt

1
—lc— a—R M(t) (M, . (19

FIG. 5. Population of susceptible mice vs infected mibeth
normalized to their respective maxijnfor a period of evolution. This equation can again be solved exactly and thus again
The values of the relevant parameters are the same as those us Ws construction of a Poinc’areap We obtain
in Figs. 3 and 4. For a very long period €40) there are no '
infected mice, and the susceptible mouse population oscillates up M, (T/2;M, O):e—(bl—alblKl+alclKl)T/2
and down the vertical axis, indicated by a bold solid line. Strictly '

speaking, the solid line should be drawn on the right axis since X[(by—cq)K, 321K
lim M, /max 1. However, we have placed it on the left
.M|4)0 | (Ml)‘) p N ><[e(cl—bl)T/Z(b K:—c.Ki—M )
axis to emphasize the actual valiiy— 0. For a near-critical pe- 1™ MM 0
riod (T=10) the populations undergo a cyclic variation as indicated +M O]alKl—lM Los (209
by the dash-dotted curve. This cyclic variation becomes narrower '
with decreasing period, e.g., the dashed curveTferl. As T—0 M,(T:M O):e—(bz—a2b2K2+azc2K2)T/2
the cycle reduces to a single point corresponding to the values given nen
in Eq. (3) with the average parameters. X[(by—Cp)K,] (132K
and the other is X [e(¢27PDT2(b,K ,— c,K,— M)
+Mg122K2 " IM ((TI2;M, o), 20b)
M o o (bl_Cl)Kl 0] I( |,O) ( )
0.2 (elc2=P2T2_1)[(b;—c;)K;— (by—C,)K,] ' whereM  is, as before, the initial condition for the infected
+ . ’ . .
(by— ) (€C1+C2-b1-bT2_ 1) mice, andM, and M in the second equation are shorthand

(15) notations, respectively favl (T; M) andM(T/2;M) for the
stable orbit. We can find the fixed points of the Poinaaap

Linearization of the Poincarenap about these solutions, by solving for the fixed point,
Mi=M;;+ 6M;, leads to Mi(T,M; 0 =M p. (D

. — a—(Cyt+cr—by—by)T/2 2
M(T;My)=e 27527272 H5%M +0(6M1) - (16)  his equation has the unique solution

and M, 0=0, (22)

M(T,Mp)=Mg + el 2 P1=bIT25M , + 0( 5M3). as expected. A small deviation of the Poincarep around
(17)  this null solution(no further linearization is necessary since

. . the map itself is linearleads to
Thus the null solution is unstable and the closed orbit stable

for all finite periods providedh, +b,>c,+c,, i.e., provided M (T,M, o) Ay\ K2 (A, 3K

the death rate does not overwhelm the birth/maturation rate. m=—yg— ~N (A_) (A_) (23
In our explicit examples we have implemented this condi- 1o 3 °

tion. Here

With this condition on the parameters, we can now use the
stable solution foM (t) and substitute it in the equation for A;=e ™ (P17P27210:1K178202K) T2 g K ;) ~31K1( g, K ,) ~32K2,
M, (t), which can now be written as the set of equations (24
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Azzgsz[gl(e—GzT@_ 1)K, + gze_ng/2(e_ng/2— 1)K,], continuity for everyt. This implies that ifM;>0, it will
(25 remain positive for all times. Since the system has the unique
fixed point M;=0, our nonzero initial condition will not

As=gy(e” 1T2—1)K,+g,e 9T (e %22 -1)K;. encounter any steady state. Furthermdge<M, and since
(26) M is boundedas we established, it performs a stable closed
As=g.K[go(e 9T~ 1)K, + g~ 9 T2(e 9272 1)K ], orbit), M, is bounded. We can thus conclude that far

27 >1, M, must perform a closed orbit in a region of the phase
space with 6<M ;<M for all time.
As=gq(e 92T2— 1)K, +g,e 92T2(e 91T2—1)K,, We have therefore established>1 as the general condi-
(28)  tion for an outbreak to occur in our seasonal environment.
This condition is entirely general, i.e., it holder all pos-
sible values of the model parameters and for all possible
gi=(b;—c;). (29  Vvalues of the periad/Ve can thus easily establish whether or
not a given set of parameters will lead to an epidemic. For
If m>1, the null solution is unstableNote that the sys- the particular values of the parameteysb; ,c; that we have
tem of Egs.(189 and (18b) can be written asl(M,,#)/dt chosen for our illustrations in the previous sections, we find
=f[(M,,0)], wheref[(M,,60)] is piecewise continuously that seasonality-induced outbreak #§=4, K,=1 occurs
differentiable, with discontinuities only in the variabfeat  only in the open interval &T<T., with T.=11.67 (cf.
the integer and half-integer multiples @t Therefore, be- Fig. 2).
tween the discontinuities dff (M, 6)], the solution of the It is interesting to ascertain the behavior of the system in
differential equation exists, is unique, and is smooth. Sincéhe limit T—0, since we discussed this behavior earlier as an
we take the final point of every semiperiod as the initialadiabatic elimination limifcf. Eq. (7)]. For this case we can
condition for the next one, we can claim existence andexpandm in a McLaurin series in the period and retain only
unigueness of the solution for all values pfas well as the first order:

and

B [(by+by)Ki+(biby,—(a+ay)(by+by—ci—c)Ky)K,]

= +0(T?).
m=1 2K+ Ky) T+0(T9) (30
|
In this casem>1 if and only if tween two time scales: an external one, the duration of a
season, and an internal one, the relaxation time for the mouse
K.> (by+by)K; 31) colony to equilibrate its population from season to season.
1

b;+b,—(a;+ay)(b;+by,—c;—cy)Ky' We have shown that if the relaxation time were shorter than
the duration of the seasons, no propagation of Hantavirus
which is exactly the condition obtained with an adiabatic\yould occur. On the other hand, if the relaxation process is
elimination. N interrupted by the seasonal alternation, the disease spreads.

Finally, we stress that the condition>1 can be used t0 e have analyzed the general conditions for which the phe-
calculate the conditions for the outbreak to occur for any,omenon occurs, and established the stability of the solutions
comblnatlpn Of. parameters, not only those we havt_e chosen %at characterize an outbreak. Moreover, we have illustrated
focus on in this paper and that lead &l <T, with T, the mechanism with a particular example based on physi-

211.'67' In particular, ',t IS ’|nterest’|ng to note that for the cally reasonable parameter choices consistent with data
particular values of tha’s, b’s andc’s used in our illustra- where available

tion, when the period exceeds the vallie 242.73 there are This work may help to clarify the reported relation be-

no values ofK;,K, that lead to an outbreak, i.e., the en-t limat d i f Hanta in mi lati
closed region illustrated in Fig. 2 shrinks away completely. ween climate and propagation of Fanta in mice populations.
However, to elucidate whether the proposed phenomenon ac-

tually takes place in nature we depend on data that unfortu-
nately are not available in the literature. One can envision

By introducing seasonality in a paradigmatic model forfurther modifications of the model that may improve its fea-
Hantavirus propagation in mice colonies, we have showriures, such as, for example, the inclusion of spatial depen-
that the alternation of seasons may cause outbreaks of tigkence[9,13], of explicit delay effects, or of noisy contribu-
disease. The striking feature of that behavior lays in the factions to the dynamics. Finally, we stress that the general idea
that neither season satisfies the conditions for the infection tanderlying the mechanism may be extended to other systems
spread in terms of the availability of resources. The mechawhere seasonality plays a relevant role. Work along these
nism responsible for the phenomenon is the competition bedirections is in progress.

VI. CONCLUSIONS
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